非幺正演化中的几何相角和分段跟随现象
星期五, 2019/06/14 - 09:00 to 10:00
主讲人 (Speaker):
王清海
主讲人单位 (Speaker's Institute):
National University of Singapore
邀请人 (Invited by):
罗乐
时间 (Time):
星期五, 2019/06/14 - 09:00 to 10:00
地点 (Location):
珠海校区海滨红楼17栋107 (Rm 107, Red House 17)
摘要 (Abstract):
当一个厄密的量子系统的哈密顿量随时间缓慢变化时,演化态(含时薛定谔方程的解)有可能跟随能量本征态,这就是量子力学中的绝热定理。如果哈密顿量是周期函数,那么演化态经过一个周期获得的相角可以分解为一个动力学部分和一个几何部分。几何部分叫做几何相(角)。在厄密系统中,几何相总是实的而且是规范不变的。通常非厄密的系统的演化是不稳定的,但是周期性的非厄密系统的长期演化可能是稳定的。在这个报告中,我会给出一个新的适用于非幺正系统的几何相的定义。通过研究这种系统中的演化循环态的几何相,我们发现有的非厄密系统永远不会有绝热跟随。当哈密顿量变化足够缓慢时,动力学态在不同的能量本征态之间跳跃。我们把这种现象叫做“分段跟随“。分段跟随是一个新的临界现象,数学上可以把它理解为微分方程中的斯托克斯现象。
主讲人简介 (Speaker's CV):
Education: Ph.D. in Physics, Washington University in St. Louis, USA (2005) Thesis Advisor: Carl M. Bender A.M. in Physics, Washington University in St. Louis, USA (2001) M.Sc. in Physics, University of Science and Technology of China, China (2000) B.Sc. in Physics, University of Science and Technology of China, China (1996) Working Experience: 2012-present, Senior Lecturer, National University of Singapore, Singapore 2008-2011, Lecturer, National University of Singapore, Singapore 2008, Research Fellow, Singapore Management University, Singapore 2007, Adjunct Faculty, Singapore Management University, Singapore 2005-2007, Postdoctoral Fellow, University of Connecticut, USA Awards and Honours: NUS Annual Teaching Excellence Award: AY2016/2017, AY2017/2018 Faculty of Science Teaching Excellence Award, NUS: AY2010/2011, AY2011/2012, AY2015/2016, AY2016/2017, AY2017/2018 The Franklin B. Shull Prize for Teaching Excellence, Washington University: 2001 The Excellent Student Prize, USTC: 1995, 1996 The Fifth Zhang Zongzhi Scholarship of Science and Technology, USTC: 1992